
Journal of Statistical Physies, Vol. 38, Nos. 1/2, 1985 

Spontaneous Symmetry Breaking of Optimum 
Fluctuations in Semiconductors 

F. V. K u s m a r t s e v  I and E. I. R a s h b a  1 

Received April 2, 1984 

The optimum fluctuation method (OFM) has been applied to the tails of the 
density of states, arising near the edges of the spherically symmetric degenerate 
bands. In this case the optimum fluctuations (OF) have been shown to undergo 
a qualitative change, as compared to the case of nondegenerate bands, they lose 
the spherical symmetry and become elongated or flattened. This means that 
spontaneous breaking of symmetry takes place. In addition to the usual 
mechanism of tailing due to the potential of impurities, another mechanism 
connected with the field of random deformations, arising due to difference in the 
size of the guest and host atoms, has been also considered. The method used for 
treating this problem is intimately related to the techniques of the theory of self- 
trapping. The density of states in the tails, and in some cases the shape of OFs, 
have been found for all the cases under consideration. 

KEY WORDS: Density of state tails; spontaneous symmetry breaking; 
optimum fluctuation method; degenerate energy bands; virial theorem for 
nonlinear functionals. 

It  seems natural to anticipate that the solution corresponding to the minimal 
"eigen value" is spherically symmetric. However, the absence o f  sueh a 
"symmetry breaking" has not been proved in the general form so far.  
I. L i f sh i tz  et al,~l) Sec t ion  15.1 

1. I N T R O D U C T I O N  

T h e  a b o v e  e p i g r a p h  is a f o o t n o t e  f r o m  the  m o n o g r a p h  o f  L i f sh i t z  et 
al. m I t  pu ts  f o r w a r d  the  p r o b l e m  a n d  s o u n d s  as a cha l l enge .  Th i s  p a p e r  is 

a i m e d  at  i n t r o d u c i n g  a n d  c o n s i d e r i n g  a qu i te  n e w  aspec t  o f  th i s  p r o b l e m .  
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Below we show that the symmetry breaking, mentioned in this footnote, is 
indeed absent in a simplest model only, when the band is nondegenerate. On 
the contrary, for degenerate bands the symmetry breaking is a general 
regularity. 

First of all we present a brief introduction to the problem. Once a 
semiconductor or a dielectric crystal contains either impurities, or defects, 
the tails of the density of states arise in the forbidden gap. The part of these 
tails arising due to large impurity clusters can be described by the OFM, 
developed by Halperin and Lax, ~2) Zittarz and Langer, ~3) and by Lifshitz. ~4~ 
This method is used extensively and has been generalized in 
monographs. ~1'5'6) For the model, in which the random potential is described 
as a white noise, the density of states p(E) is 

In p(E) oc - IE/ rn3]  1/2 (1) 

where E is the energy (the bottom of the band is chosen as an origin), and m 
is the mass of a particle. 

The tails of the density of states have been observed experimentally in 
heavily doped semiconductors, and also in solid semiconducting alloys, in 
which the random potential arises due to fluctuations of the content. The 
existence of tails in the edge absorption in some materials of the second 
group has been recently observed in optical spectra by a number of 
workers. ~7-1~ For the energy dependence of the absorption the theory (1~) 
provides a formula which is similar to (1). It can be seen from (1) that the 
density of states in the tails decreases the slower, the larger the mass of the 
particles m is. Usually, the mass of heavy holes is the heaviest one in 
semiconductors. Therefore, the most extensive tails should arise near the 
valence band edge. However, the valence band in cubic semiconductors is 
usually degenerate. At the same time the theory of tails of the density of 
states has been developed previously for nondegenerate bands. As far as we 
know the only exceptions are our preliminary communications, (12'~3) where 
the main peculiarity of OFs near the degenerate bands, the spontaneous 
breaking of symmetry, has been established. The results of the paper ~12) were 
applied in Ref. 14 to zero-gap semiconductors, and in Ref. 15 to the spectra 
of mixed crystals CdSl_xSe x. 

The general outline of the paper is the following. In Section 2 is 
presented the Hamiltonian of the system and a description of the variational 
principle which is applied for solving this problem. Section 3 presents the 
basic results of the calculations. Section 4 deals with the generalized problem 
in which the random strains caused by difference in the radii of particles 
forming a mixed crystal are taken into account. 
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2. HAMILTONIAN AND THE VARIATIONAL PRINCIPLE 

The theory of bound states near the edges of degenerate bands, as is 
well known, requires cumbersome calculations. Having in mind the fact that 
we are going to consider a new phenomenon--spontaneous symmetry 
breaking of OFs--we simplify as much as possible the Hamiltonian under 
consideration. 

First of all we limit ourselves to the cubic crystals possessing the 
inversion symmetry. Additional terms in the Hamiltonian arising when the 
inversion symmetry is absent are usually small; therefore, we do not take 
them into account. We also assume that the Hamiltonian can be written in 
the spherical approximation [group O(3)], i.e., the cubic invariants ~16'17) can 
be omitted; this approximation may turn out to be more restrictive. Below 
we consider two most important cases in parallel. 

1. The threefold degenerate band. It corresponds to holes under the 
conditions when the spin-orbit coupling is absent, or to Frenkel excitons 
when the optical transition is dipole-allowed but weak. 

2. A fourfold degenerate hole band under the conditions of a strong 
spin-orbit coupling. 

It is convenient to describe the band degeneracy by ascribing the spin to 
the corresponding quasiparticle: in the first case S = 1, and in the second 
case S = 3/2. We also use the second quantum number-helicity of the 
particle a, i.e., the projection of spin onto the quantization axis. The effective 
mass in the state with the helicity a is denoted by m~. Everywhere below the 
sign in the Hamiltonian of a hole will be changed by the opposite one, to 
eliminate the negative kinetic energy. 

In these notations the kinetic energy operator of a particle with the spin 
S = I  has the form ( h = l )  

1 1 
ibl = 2m~--1- rot rot -- ~ grad div (2) 

or, another form, which is the same: 

1 1 iP~ = ~ [--V 2 + (SV) 2 ] -- ~ (SV) 2 (3) 

Vector S = (Sx, Sy, Sz) is constructed of matrices of the angular momentum 
operator. The corresponding spectrum of free particles is shown in Fig. la.; 
the eigenfunctions are spherical vectors. 
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For a particle with the spin S = 3/2 the Hamil tonian  is 

7.3/2 _ 1 (SV) 2 _ 9 V2 + _ _  (SV) 2 
4ml/2 4 4m3/2 

Its spectrum is shown in Fig. lb;  the eigenfunctions are spinors. 
The operators  7.1 and 7.3/2 are invariants of  group 0(3) .  
In semiconductors  usually ~ 1  = ml/mo > 1 and ~33/2 = mg/2/ml/2 > l, 

that is, the masses m I and ms~ 2 a r e  heavy masses,  whereas m0 and ml/2 are 
light masses. 

As for the random potential U(r), we assume that  its mean value 
(U(r) )  = 0, and U(r)oc ~Sn(r), where ~Sn(r) is the deviatiori of the concen- 
tration of a solid solution from its mean value. Such modeling seems to be 
reasonable enough for the systems with isoelectronic substitution and 
corresponds to the Faulkner  description (18~ of the isoelectronic guests. For 
instance it can be applied to the systems of the A l x G a l _ x A s  type. Let us 
introduce the functional Y [ U ] ,  which differs from entropy only by the sign. 
Then assuming the composit ion distribution to be random, we may  obtain 
the expression for entropy from the relation U(r)oc~Sn(r) and simple 
statistical considerations: 

Y [ U ]  = @fiB f Ua(r) dr (5) 

B is the constant. This scheme is equivalent to the white noise model with 
the correlation function 

(U(r)  U( r ' ) )  = B6(r - r ' )  (6) 

The O F M  consists in finding the most  probable fluctuation providing 
the quantum level position equal to E. Since the probabil i ty of  the fluc- 

//" 

(a) (b) 
Fig. 1. Spectrum of free particles with spins S = 1 (a) and S =  3/2 (b). The twofold 
degenerate branches of the spectrum are shown by double lines. It is assumed that rn o < rnl, 
ml/2 < m3/2. 
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tuation is proportional to e x p { - ~ [ U ] } ,  this means that the minimum of 
,Y[U] should be found under the additional condition that the equation 

(WI 7~+ U ( r ) 1 7 ' ) = E  (7) 

is satisfied. Here E is the lowest quantum level in the potential U(r), and 
7~(r) is the normalized wave function. The corresponding equation can be 
written as follows: 

6 u { Y [ U  ] +/~E[U]} = 0 (S) 

where fl is the Lagrange factor, which is determined by the condition 
E[U]--E. Performing the variation in (8) we get 

and 

Here 

U(r ) = (e(r) e(r )) 

121 6 W =  {T--f lB(W(r)  W(r))} W(r)=E(fl) W(r) 
Eq~) ----E 

(W(r) 7t(r))= }U~(r) ~ ( r )  

(9) 

(10) 

(11) 

is the scalar square of 7 j, taken over the vector (spinor) index a. Vector 7 j is 
assumed normalized, (~u] ~u)= 1, this notation includes integration in r 
]quite similarly to (7)]. 

In the simplest case T = - A / 2 m .  Then 7 t is substituted by the scalar 
function ~,; the nonlinear equation (10) can be rewritten in nondimensional 
form and solved numerically. Then the minimal 5~(E) and the density of 
states p(E)~ exp{--Y(E)} are calculated by Eqs. (9) and (5) (see, for 
instance, Ref. 1). In this case 

13.3 E t/2 ~ c (  E ) = ~ ]  I (12) 

In order to solve Eq. (10) for the multicomponent 7", we shall use the 
procedure, closely connected to the theory of self-trapping barrier. (19'2~ 
Equation (10) can be regarded as an equation for the stationary points of the 
functional 

H~[7'] = (~1 T -  �89 l~) (13) 

This representation makes it possible to obtain the virial theorem. (21'19) 
Performing the substitution 7t(r)--+ v3/2tp(vr), we get 

H~(v)-- v2(~[ t l k~)--21-- v3flE f (}Y}/0 2 dr (14) 
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~(r) is an extremal of H~[gt], hence dH~(v)/dvl~l=O. This leads 
immediately to the virial theorem: 

(15) 

It follows from Eqs. (10), (13), (15) that for extremal paths of Eq. (13) the 
following relation holds: 

E(fl) = --H~ < 0 (16) 

And from Eqs. (5), (9), (10), and (15) we have 

y ( e )  = :B(E)lel  (17) 

The functional H~[~] is not bounded from below. This can be seen 
from (14), its right-hand side tends to - m  when v-* m. As a result, 
Eq. (10) has an infinite number of negative levels E ,  ; their moduli increase 
with the quantum number n. According to (16), each of E ,  corresponds to a 
positive stationary point of the functional HB[7~ ]. Below we show [see 
Eq. (20)] that fl(E)oc [El 1/z. Therefore, according to (17), the E = E  o, i.e., 
the negative eigen value with the minimal modulus corresponds to the 
minimum of 5 p. The lowest saddle point of the functional H~[7 s] may be set 
into correspondence to this eigenvalue. Indeed, according to (14) H~ = 0 at 
v = 0 and H~ ~ - o o  when v -~ oe. Therefore, the lowest stationary point with 
H~ > 0 should be a saddle point of the functional H~[~u]. 

In order to estimate the order of magnitude of the basic physical quan- 
tities without performing numeracal calculations, it is convenient to pass to 
nondimensional variables. When introducing them, one has to take account 
of the fact proved in the next section, that these quantities are scaled by the 
mass of heavy holes m h. This means that while varying ~ / o n  the semiaxis 
(0, c~), these basic quantities vary in finite limits (cf. Figs. 2-4). 

The nondimensional variables are introduced according to the 
definition: 

r = roT, 7J(r) = ro3/2~(~), r o = mhflB 

E = g/mhr 2, H~ =J f /mhr  ~ , f= T/mhr~ 
(lS) 

Then functional (13) is substituted by 

= I f 9  (19) 
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, 1 I 

I 5 10 15 ,~, 

Fig. 2. The functions f(~#') and A(~") for the band with S= I: (a) Solid line, M=O; 
dashed line, M =  ~I  (nonsymmetric fluctuations); dotted line, optimum spherical fluctuation; 
dash-and-dot line, the state with M = • 1 in the field of optimum fluctuation corresponding to 
M = 0; (b) The function A ( / / )  for M = 0. 

U s i n g  ( 1 7 )  a n d  ( 1 8 )  we  ge t  

fl(E) = Bm3/~ 

2 
Y ( E )  - BmSh/2 (~,U [ E l )  1/2 

( 2 0 )  

( 2 1 )  

6 

I I 1 

! 5 10 15 ZO 

Fig. 3. The functions f(,,~) and A(Jf) for the hand with S = 3/2: (a) Solid line, nonsym- 
metric fluctuations (M = =1/2  and M = •  dotted line, optimum spherically symmetric 
fluctuations; (b) the upper curve, M =  ~I /2 ,  the lower one, M =  • All the curves almost 
do not change, if the holes with a = • 1/2 are heavy, and A a n d f  are plotted versus J - ] .  
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5 

3 

I 

,,,I I t ~  

IZO 20 
Fig. 4. The funct ion f ( J " )  for the band  with S = 1 at m o > m•  Solid line, M 0; dashed 

line, M = • 1. 

Equation (21) agrees with (12): the quantity J F = J K ( ~ ( )  involved in it is 
determined by finding the extremal of the functional (19) corresponding to 
its lower saddle point. Formula (21) is a rather general one, but for more 
realistic models ~ should be determined by variation of the functional (19) 
with a more complicated operator ~. 

3. ANISOTROPY OF O P T I M U M  FLUCTUATIONS 

Now we consider functional (19) or its equivalent, the Schr6dinger 
equation 

{~'_ (~tp)} ~ = g ~  (22) 

If we assume that the form factor (7 '7 t) of the OF is spherically symmetric, 
the eigenfunctions of Eq. (22) can be classified to the total angular 
momentum or. And it would be natural to assume that just the states with 
J =  S provide the minimal value of Ig"l; arguments are the same as in the 
Kohn-Shechter theory of acceptor centers. ~ For instance, for S = J =  1 the 
wave function of the state having the projection of the angular momentum 
M = 0 in the basis X, Y,  Z has the form 

0 x z  

~rl0(r ) = rpl(r ) 0 -t- ~o2(r ) y z  (23) 

1 z 2 - -  r2 /3  
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Here (Ox(r) and (02(r) are spherically symmetric functions. Using Eq. (23) one 
may easily see that the assumption on the spherical symmetry of (~ku) is 
contradictory. Indeed, we have 

( 2 r4 t 

(24) 
1 r2(p~) q'- 22 (2~01 ~02 q-~- 

The last term is nonsymmetrical, and the condition that both its summands 
cancel each other 6~01q92 + r2~02 = 0 imposes the restrictions upon O~ and 92, 
which are inconsistent with (22). The only exception is the case ~ " =  1, 
when Eq. (22) falls into independent scalar Schr6dinger equations, as follows 
from Eq. (3). The situation is analogous for S = 3/2. 

Therefore, the vector (spinor) nature of ~u leads to the spontaneous 
symmetry breaking of OFs. This phenomenon is similar to the spontaneous 
symmetry breaking of a self-trapping barrier, where the Jahn-Teller 
mechanism is acting. (19'2~ 

The numerical calculation for the lowest saddle point of the functional 
(19) has been performed for the bands with S = 1 and S = 3/2. It has been 
supposed that the minimal breaking of symmetry which violates the 
degeneracy sets in, therefore, the group Doo h is retained. In this case the 
states are classified according to the projection M of the angular momentum 
on the symmetry axis. Since before the breaking of the spherical symmetry 
the eigenstates were assumed to belong to the angular momentum J =  S, 
only the states with M =  0, +1 and M =  •189 •  were calculated. The most 
detailed calculations were carried out for Jt~, ~3/2 > 1. The method of 
calculation is similar to that described in Ref. 20, as applied to a self- 
trapping barrier. At large J / t h e  change in the asymptotic behavior of ~(~) 
at ~ >> 1 is taken into account: at any finite ~ "  the 7, decreases exponentially, 
and at ~ " =  oo, following the power law (Woc ~-3). 

The final results of calculation are shown in Figs. 2 and 3 in the form 
of two functions: f(~g/) and A (~"). The first of them, 

(m l"2 
f ( ~ )  = \ - - ~ - ~ - }  - ~ (25) 

allows one to calculate Y ( E )  by Eq. (21). The second part of Eq. (25) can 
be considered as a definition of the equivalent mass m~q = m~q(~"). Using 
(25) one way write [cf. (12)] 

13.3 f 2g/ E = 13.3 IEI1/2 (26) Y ( E ) = ~  ( )1 11/2 ,/2 
Bmeq (J/) 
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The second function A (~r describes anisotropy of fluctuations. It is defined 
as A(~r = zo(A')/po(Jr ), where z 0 and Po are positions of the points on the 
axis of quantization and in the plane normal to it, in which ( ~ )  shows a 
twofold decrease, as compared to the point r = 0. It is seen from Fig. 3b that 
at a given S the states with different values of IMI have the opposite asym- 
metry. 

Let us discuss the results presented in Figs. 2 and 3. It is clear from 
Figs. 2b and 3b that the anisotropy of optimum fluctuations is high. This 
fact follows from Fig. 2a too, where the dash-and-dot curve shows f (~ r  for 
the states M = + 1 in the field of the OF corresponding to M = 0. It strongly 
differs from a solid curve, whereas in a spherically symmetric potential they 
should have coincided. At the same time the difference in f(~r for different 
values of M is small (Fig. 2a and 2b); in the case S = 3/2 it is less than the 
accuracy of calculations (several percent). This result seems puzzling and we 
cannot interpret it now. The fact that the values o f f ( d e )  for rather different 
(elongated and flattened) fluctuations are close one to another forced us to 
calculate also the function f(~r corresponding to the fluctuation, which is 
optimal in the class of spherically symmetric functions. In this calculation in 
Eq, (19) the substitution 

(tp(~)~(~)) ~ ((~(~)~(~))>~ (27) 

was performed in Eq. (19). Here the brackets designate averaging over the 
angles. From Figs. 2a and 3a it follows that the values of f (~ r  obtained 
only slightly exceed the values of f(~r for self-consistent nonspherical 
functions. It should be noted that the states with M = • 1 are self-consistent, 
but are not extremals, since the functions 7J• do not make a Kramers 
doublet. So, a second symmetry breaking is to set in: the fluctuations 
violating the axial symmetry will result in the splitting of level g• It seems 
most probable that for S = 1 the only saddle point arising from the first 
multiplet J =  1 corresponds to the states with M = 0, but the directions of 
the quantization axis are distributed randomly. 

One may conclude from the foregoing that in the functional space there 
is a vast region of fluctuations of quite different shape (from considerably 
elongated to the flattened ones), but providing close values o f f ,  and conse- 
quently of Y as well. So, the usual method of finding a preexponential factor 
po(E) in p(E)=p0(E)exp{--~(E)} by expanding the functional Y [ U ]  near 
its minimal value and by subsequent functional integration in the vicinity of 
the minimum is not applicable, and the factor po(E) should be anomalously 
large. 

For comparison, Fig. 4 presents the results of calculating o f f ( ~ " )  for 
the band S =  1 and for the state M =  0 in the case when m 0 > m t. Here 
f(~r varies over a much wider range than it did in the previous case. 
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It was assumed above that the initial T (before the symmetry breaking!) 
belonged to irreducible representation with the angular momentum J = S. In 
principle, the other possibility exists that the minimal Y is reached with the 
function ~ transforming according to the completely symmetric represen- 
tation. Such a ~u has the form ~ i ( r ) =  xig(r ), i numerates the Cartesian 
coordinates x i, and no spontaneous symmetry breaking exists. However, the 
calculation shows that such a function always leads to a larger Y than the 
functions arising from the states with J = S. Apparently, the reason is that 
the given 'P has a node at r = 0, whereas in the (23)-type functions the first 
term which has no nodes is usually predominating. 

4. THE EFFECT OF RANDOM STRAINS 

The isoelectronic impurities create both the random potential U(r) and 
the field of random strains connected with difference in covalent or ionic 
radii of the guest and of the host atoms. (22) In an isotropic medium the 
equation for the vector of the displacements u(r), caused by the spatially 
inhomogeneous composition n(r), has the form 

- ( 2  + 2#) grad div u +/~ rot rot u = F o grad n(r) (28) 

Here 2 and/~ are the Lam6 constants, and the constant F 0 is proportional to 
the difference in the atomic radii. As in Section 2, we assume that 
U(r) oc ~n(r). Therefore, the right-hand side of (28) can be rewritten as 
Fgrad  U(r). We apply the macroscopic equation (28) as a most simple one, 
neglecting the inaccuracy which it introduces for low-scale inhomogeneities. 
The solution of Eq. (28) has the form 

r ! r  rad; dr 
u(r) 4rc(2 + 2/*) 

Deformation u(r) arising due to the crystal inhomogeneity affects the 
electrons through the deformation potential. Under these conditions the 
equation generalizing (7) has the form 

E =  (~u I /~+ U(r) + [~1 + S(S + I)~21 G-i(r) 

- 3@2eij(r ) S i S j I ~ )  
(30) 

Here eij=~(cgui/c3xi+cquj/cgxi) are the components of the deformation 
tensor, and ~1 and @2 are deformation potentials. From Eq. (8), using (5) 
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and the relation ei;(r ) = - [ F / ( 2  + 2/a)] U(r), following from (29), we get a 
formula for U(r): 

r~,  r ~  (31) 
U(O = - ~ B y g ~ ' ( r ) ,  ~ = 1 ~ + 2/, - ~, + 2V 

where /( is the nonlinear integral operator transforming T(r) into a scalar 
function: 

KT(r)  = (T(r) T(r)) 

+ 4 ~ f  dr' c3 2 
I r - r ' l  ex;~xj %(r') 

• (SiSj  -- S (S  + 1) 6i:) 7/~(r') 

here d = ~r2/~ ~. The generalized Eq. (13) acquires the form 

H~[T] = (Ttl ]01 7J) - �89 (/(T) 2 dr 

The theorem of virial which follows from it, 

leads to the relations 

(TI T I 70 = 3 flBY 2 f (RT)  2 dr 

(32) 

(33) 

(34) 

(37) 

which generalizes (19). ~ depends on two parameters, ~ and d. 

The quantity ~ in 
functional 

~g':[~] = (~l F/~) -- i f ( / ~ ) 2  dr 

1 
E = - H ~  - 4fiB f UZ(r) dr (35) 

It follows from (5) and (35) that Eq. (17) for Y remains valid. 
Transformation to non-dimensional units is performed analogously to 

(18) with the only difference being that ro=rnhflBy 2. As a result, f l - l =  
Bm3/272 (IE]/Jg') 1/2, and the final expression for 5 :  has the form 

2 
~cZ;(E,) - -  BFFl3h/2~] 2 (~g:  IEI) 1/2 (36) 

(26) is a stationary value of the nondimensional 
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Figure 5 shows the results of calculation of the function 

f (~" ~) = ~-~i~,  N (38) 

The basic result which can be distinctly seen in the figure is that the 
difference in the values o f f  for M =  0 and M =  • which was small at 

2 

t 

5 "  

f 
/ 

/ 
/ 

I 
/ 

/ 

~3 

/~ --- ~/~ ~ 2 

3 

I 

I ,, I I 

-o~5 o 005 ~oO d 
Fig. 5. F u n c t i o n f ( ~ ' ,  d) for the band with the spin S = 1. The mass ratio is the parameter 
of the curves: (1) ~ =  1, (2) ~ =  4, (3) ~ ' / =  10. Solid lines, M =  0; dashed lines, M =  +1. 

822/38/1-2 22 
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d = O ,  strongly depends on d. When ~ ' 4 =  1, the curves corresponding to 
M = 0 and M = ~: 1 within the accuracy of calculation almost touch one 
another at d 4= O. The difference in the values of ordinates at these points is 
within the accuracy of calculation, and at these values of d the parameter 
A ~ 1, i.e., the OFs are almost spherically symmetrical. Away from these 
points the curves, corresponding to M = 0 and M = + 1, are widely spaced. 
This fact has important consequences, since in the functional space there 
arises a distinctly marked region of anisotropic fluctuations with entropy, 
which is close to the maximal one. It should be stressed that this effect is 
completely due to the "second" deformation potential 9 2 , introducing the 
spin-depending terms into the total potential. 

The presence of large spin-depending terms in U(r) should lead to a 
similar result. 

5. CONCLUSION 

The above results make it possible to draw some conclusions. On an 
example of bands with the spins S = 1 and S = ~ it has been shown that 
degeneracy of bands results in a spontaneous symmetry breaking of the 
optimum fluctuations. This conclusion is of a general character. It remains 
unclear (Section 3) why in a rigid lattice fluctuations from a vast region of 
the functional space possess comparable entropy. It has been shown, 
however, that the lattice deformations arising due to disorder eliminate this 
degeneracy, at least partly. The symmetry of OFs should itself be manifested 
in a number of physical phenomena, such as luminescence and light 
scattering. (12) But at least in the white noise model this asymmetry does not 
change the analytical behavior of the density of states, which has a universal 
form: - l n  p(E)  oc IE[ l/z, and influences only the value of the numerical coef- 
ficient at [El. A change in the analytical behavior of p = p ( E )  arises when 
the hole-phonon coupling is taken into account. In this case even the abrupt 
termination of the tail of p(E) is possible(Z3); but this problem is beyond the 
framework of our paper. 
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